Improving Recognition through Object Sub-categorization

نویسندگان

  • Al Mansur
  • Yoshinori Kuno
چکیده

We propose a method to improve the recognition rate of Bayesian classifiers by splitting the training data and using separate classifier to learn each sub-category. We use probabilistic Latent Semantic Analysis (pLSA) to split the training set automatically into subcategories. This sub-categorization is based on the similarity of training images in terms of object’s appearance or background content. In some cases, clear separation does not exist in the training set, and splitting results in worse performance. We compute the average difference between posteriors from the pLSA model, and observing this parameter, we can decide whether splitting is useful or not. This approach has been tested on eight object categories. Experimental results validate the benefit of splitting the training set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Kernels Couple Visual Words Through Categorical Opponency

Recent progress has been made on sparse dictionaries for the Bag-of-Visual-Words (BOVW) approach to object recognition and scene categorization. In particular, jointly encoded words have been shown to greatly enhance retrieval and categorization performance by both improving dictionary sparsity, which impacts efficiency of retrieval, and improving the selectivity of categorization. In this pape...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Improving Image Categorization by Using Multiple Instance Learning with Spatial Relation

Image categorization is a challenging problem when a label is provided for the entire training image only instead of the object region. To eliminate labeling ambiguity, image categorization and object localization should be performed simultaneously. Discriminative Multiple Instance Learning (MIL) can be used for this task by regarding each image as a bag and sub-windows in the image as instance...

متن کامل

Recognizing in the depth: Selective 3D Spatial Pyramid Matching Kernel for object and scene categorization

This paper proposes a novel approach to recognize object and scene categories in depth images. We introduce a Bag of Words (BoW) representation in 3D, the Selective 3D Spatial Pyramid Matching Kernel (3DSPMK). It starts quantizing 3D local descriptors, computed from point clouds, to build a vocabulary of 3D visual words. This codebook is used to build the 3DSPMK, which starts partitioning a wor...

متن کامل

P1: Dextran Curcumin Promotes Novel Object Recognition Memory in Rats after Ischemic Stroke

Ischemic stroke causes the depletion of energy and induces excitotoxicity and neuroinflammation in the brain that results from thrombotic blockage. Cerebral ischemia leads to many types of memory loss, including impairment of working, spatial and object recognition memoreis. Curcumin shows strong anti-oxidoinflammatory activities but it terapathics limited by its low solubility in water and cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008